An Empirical Study of a Linear Regression Combiner on Multi-class Data Sets
نویسندگان
چکیده
The meta-learner MLR (Multi-response Linear Regression) has been proposed as a trainable combiner for fusing heterogeneous baselevel classifiers. Although it has interesting properties, it never has been evaluated extensively up to now. This paper employs learning curves to investigate the relative performance of MLR for solving multi-class classification problems in comparison with other trainable combiners. Several strategies (namely, Reusing, Validation and Stacking) are considered for using the available data to train both the base-level classifiers and the combiner. Experimental results show that due to the limited complexity of MLR, it can outperform the other combiners for small sample sizes when the Validation or Stacking strategy is adopted. Therefore, MLR should be a preferential choice of trainable combiners when solving a multi-class task with small sample size.
منابع مشابه
FUZZY LINEAR REGRESSION BASED ON LEAST ABSOLUTES DEVIATIONS
This study is an investigation of fuzzy linear regression model for crisp/fuzzy input and fuzzy output data. A least absolutes deviations approach to construct such a model is developed by introducing and applying a new metric on the space of fuzzy numbers. The proposed approach, which can deal with both symmetric and non-symmetric fuzzy observations, is compared with several existing models by...
متن کاملPredicting peak particle velocity by artificial neural networks and multivariate regression analysis - Sarcheshmeh copper mine, Kerman, Iran
Ground vibrations caused by blasting are undesirable results in the mining industry and can cause serious damage to the nearby buildings and facilities; therefore, controlling such vibrations has an important role in reducing the environmental damaging effects. Controlling vibration caused by blasting can be achieved once peak particle velocity (PPV) is predicted. In this paper, the values of P...
متن کاملA committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملThe Comparison of Multi-variable Linear Regression and Artificial Neutral Networks in Tax Evasion of Legal Persons in Iranian Tax System
Tax evasion is one of the most important problems of tax system in the most countries around the world. It covers any unlawful attempt to avoid paying taxes. In present study, the affective factors on tax evasion based on experts’ views were extracted by using Delphi method, so we identified 29 factors and finally 16 factors were extracted based on measurement ability among them. The statistica...
متن کاملRegularized Linear Models in Stacked Generalization
Stacked generalization is a flexible method for multiple classifier combination; however, it tends to overfit unless the combiner function is sufficiently smooth. Previous studies attempt to avoid overfitting by using a linear function at the combiner level. This paper demonstrates experimentally that even with a linear combination function, regularization is necessary to reduce overfitting and...
متن کامل